Fabrication of an Ultra-Fine Grained Pure Titanium with High Strength and Good Ductility via ECAP plus Cold Rolling

نویسندگان

  • Haoran Wu
  • Jinghua Jiang
  • Huan Liu
  • Jiapeng Sun
  • Yanxia Gu
  • Ren Tang
  • Xincan Zhao
  • Aibin Ma
چکیده

Microstructure evolutions and mechanical properties of a commercially pure titanium (CP-Ti, grade 2) during multi-pass rotary-die equal-channel angular pressing (RD-ECAP) and cold rolling (CR) were systematically investigated in this work, to achieve comprehensive property for faster industrial applications. The obtained results showed that the grain size of CP-Ti decreased from 80 μm of as-received stage to 500 nm and 310 nm after four passes and eight passes of ECAP, respectively. Moreover, abundant dislocations were observed in ECAP samples. After subsequent cold rolling, the grain size of ECAPed CP-Ti was further refined to 120 nm and 90 nm, suggesting a good refining effect by combination of ECAP and CR. XRD (X-ray diffractometer) analysis and TEM (transmission electron microscope) observations indicated that the dislocation density increased remarkably after subsequent CR processing. Room temperature tensile tests showed that CP-Ti after ECAP + CR exhibited the best combination of strength and ductility, with ultimate tensile strength and fracture strain reaching 920 MPa and 20%. The high strength of this deformed CP-Ti originated mainly from refined grains and high density of dislocations, while the good ductility could be attributed to the improved homogeneity of UFG (ultra-fine grained) microstructure. Thus, a high strength and ductility ultra-fine grained CP-Ti was successfully prepared via ECAP plus CR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Grain Refinement of Dual Phase Steel via Tempering of Cold-Rolled Martensite

A microstructure consisting of ultrafine grained (UFG) ferrite with average grain size of ~ 0.7 µm and dispersed nano-sized carbides was produced by cold-rolling and tempering of the martensite starting microstructure in a low carbon steel. Subsequently, fine grained dual phase (DP) steel consisting of equiaxed ferrite grains with average size of ~ 5 µm and martensite islands with average size ...

متن کامل

Hot and Cold Tensile Behavior of Al 6061 Produced by Equal Channel Angular Pressing and Subsequent Cold Rolling

The full annealing AA6061 aluminum alloy was subjected to severe plastic deformationvia the combination of equal channel angular pressing (ECAP) and cold rolling (CR) in order torefine its microstructure and to improve its mechanical properties. According to the results of hotand cold tensile tests, the combination of ECAP and CR significantly affected the final strengthand ductility of studied...

متن کامل

Enhancing the low cycle fatigue strength of AA6061 aluminum alloy by using the optimized combination of ECAP and precipitation hardening

In the present study, mechanical properties and low cycle fatigue behavior of a solid-solutionized AA6061 aluminum alloy produced by equal channel angular pressing (ECAP) process were investigated. The grain refinement after two passes of ECAP significantly increased the yield stress and ultimate tensile stress and decreased the ductility of the alloy. However, the improvement of low cycle fati...

متن کامل

Processing of Fine-Grained DP300/600 Dual Phase Steel from St12 Structural Steel by the Thermo-Mechanical Processing of Cold Rolling and Intercritical Annealing

The effect of microstructural refinement and intercritical annealing on the mechanical properties and work-hardening response of a low carbon St12 steel was studied. It was revealed that intercritical annealing of the ferritic-pearlitic sheet results in the formation of a coarse-grained DP microstructure with discrete martensite islands normally formed in place of pearlitic colonies, which resu...

متن کامل

Ultra-Fine Grained Dual-Phase Steels

This paper provides an overview on obtaining low-carbon ultra-fine grained dual-phase steels through rapid intercritical annealing of cold-rolled sheet as improved materials for automotive applications. A laboratory processing route was designed that involves cold-rolling of a tempered martensite structure followed by a second tempering step to produce a fine grained aggregate of ferrite and ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017